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HYDRAULIC JUMPS 

 

 

Hydraulic jump of a turbidity current in the laboratory.  Flow is 

from right to left. 
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WHAT IS A HYDRAULIC JUMP?  

A hydraulic jump is a type of shock, where the flow undergoes a sudden 

transition from swift, thin (shallow) flow to tranquil, thick (deep) flow. 

 

Hydraulic jumps are most familiar in the context of open-channel flows. 

 

The image shows a hydraulic jump in a laboratory flume. 

 

flow 
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THE CHARACTERISTICS OF HYDRAULIC JUMPS 

subcritical 

 

flow 

supercritical 

Hydraulic jumps in open-channel flow are characterized a drop in Froude 

number Fr, where  

 

 

from supercritical (Fr  > 1) to subcritical (Fr < 1) conditions.  The result is a 

step increase in depth H and a step decrease in flow velocity U passing 

through the jump. 

gH

U
Fr
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WHAT CAUSES HYDRAULIC JUMPS? 

The conditions for a hydraulic jump can be met where 

a) the upstream flow is supercritical, and 

b)  slope suddenly or gradually decreases downstream, or 

c)  the supercritical flow enters a confined basin. 

Fr > 1

Fr > 1

Fr < 1

Fr < 1
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INTERNAL HYDRAULIC JUMPS 

Photo by Robert Symons, USAF, from the Sierra Wave Project in the 1950s.  

Hydraulic jumps in rivers are associated with an extreme example of flow 

stratification: flowing water under ambient air.   

 

Internal hydraulic jumps form when a denser, fluid flows under a lighter 

ambient fluid.  The photo shows a hydraulic jump as relatively dense air 

flows east across the Sierra Nevada Mountains, California. 
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DENSIMETRIC FROUDE NUMBER 

d

U

RCgH
Fr

U = flow velocity 

g = gravitational acceleration 

H = flow thickness 

C = volume suspended sediment concentration 

R = s/ - 1  1.65 

Subcritical: Frd < 1          Supercritical: Frd > 1 

Water surface 

internal hydraulic jump 

entrainment of ambient fluid 

Internal hydraulic jumps are mediated by the densimetric Froude number 

Frd, which is defined as follows for a turbidity current. 
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INTERNAL HYDRAULIC JUMPS AND TURBIDITY CURRENTS 

Stepped profile, Niger Margin 

From Prather et al. (2003) 

Slope break: good place 

for a hydraulic jump 
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INTERNAL HYDRAULIC JUMPS AND TURBIDITY CURRENTS 
Frd > 1

Frd < 1
Frd << 1

jump

coarser top/foreset

finer bottomset

ponded flow

"ultimate" profile

Flow into a confined basin:  

good place for a hydraulic 

jump 
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ANALYSIS OF THE INTERNAL HYDRAULIC JUMP 

p
p

qmomu qmomd

control volume

fpu

fpd

Hu

Ud

Hd

Uu

pref

z

Definitions: “u”  upstream and “d”  downstream 

U = flow velocity 

C = volume suspended sediment concentration 

z = upward vertical coordinate 

p = pressure 

pref = pressure force at z = Hd (just above turbidity current 

fp = pressure force per unit width 

qmom = momentum discharge per unit width 

Flow in the control volume is steady. 

USE TOPHAT ASSUMPTIONS FOR U AND C. 
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x 

H 
U 

1 

In time t a fluid particle flows a distance Ut 

 

The volume that crosses normal to the section in time t = UtH1 

The flow mass that crosses normal to the section in time t is density x 

volume crossed = (1+RC)UtH1 UtH 

The sediment mass that crosses = sCUtH 1 

The momentum that cross normal to the section is mass x velocity = 

(1+RC)UtH1U U2tH 

H = depth 

U = flow velocity 

Channel has a unit width 1 

VOLUME, MASS, MOMENTUM DISCHARGE 

UtH1 Ut 
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x 

H 
U 

1 

qf  = UtH1/(t1)    thus   qf = UH 

 

qmass = UtH1/ (t1)   thus   qmass = UH 

 

qsedmass = sCUtH1/ (t1)  thus   qsedmass = sCUH 

 

qmom = UtH1U /(t1)   thus   qmom = U2H 

qf = volume discharge per unit width = volume crossed/width/time 

qmass = flow mass discharge per unit width = mass crossed/width/time 

qsedmass = sediment mass discharge per unit with = mass crossed/width/time 

qmom = momentum discharge/width = momentum crossed/width/time 

VOLUME, MASS, MOMENTUM DISCHARGE (contd.) 

UtH1 Ut 
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p
p

qmomu qmomd

control volume

fpu

fpd

Hu

Ud

Hd

Uu

pref

z

FLOW MASS BALANCE ON THE CONTROL VOLUME  

/t(fluid mass in control volume) = net mass inflow rate 

massu massd mass

u u d d mass f

f

0 q q q const

or

0 U H U H q constant q

where q UH flow discharge / width
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p
p

qmomu qmomd

control volume

fpu

fpd

Hu

Ud
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z

FLOW MASS BALANCE ON THE CONTROL VOLUME contd/  

Thus flow discharge 

 

 

 

is constant across the hydraulic jump 

fq UH
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p
p

qmomu qmomd

control volume

fpu

fpd

Hu

Ud

Hd

Uu

pref

z

BALANCE OF SUSPENDED SEDIMENT MASS ON THE 

CONTROL VOLUME  

/t(sediment mass in control volume) = net sediment mass 

inflow rate 

sedmassu sedmassd sedmass

s u u u s d d d sedmass

0 q q q const

or

0 C U H C U H q constant
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Thus if the volume sediment discharge/width is defined as 

 

 

then qsedvol = qsedmass/s is constant across the jump. 

 

 

But if 

 

 

then C is constant across the jump! 

p
p

qmomu qmomd

control volume

fpu

fpd

Hu

Ud

Hd

Uu

pref

z

BALANCE OF SUSPENDED SEDIMENT MASS ON THE 

CONTROL VOLUME contd 

sedvolq CUH

f sedvolq UH const , q CUH const   
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PRESSURE FORCE/WIDTH ON DOWNSTREAM SIDE OF 

CONTROL VOLUME  

p
p

qmomu qmomd

control volume

fpu

fpd

Hu

Ud

Hd

Uu

pref

z

d
refz H

ref d

dp
g(1 RC) , p p

dz

p p g(1 RC)(H z)


   



    

dH
2

pd d
0

1
f pdz 1 g(1 RC)H

2
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PRESSURE FORCE/WIDTH ON UPSTREAM SIDE OF 

CONTROL VOLUME  

p
p

qmomu qmomd

control volume

fpu

fpd
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Uu

pref

z

d

u d
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ref d u u u

g , H z Hdp
, p p
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p g(H z) , H z H
p

p g(H H ) g(1 RC)(H z) ,0 z H
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PRESSURE FORCE/WIDTH ON UPSTREAM SIDE OF 

CONTROL VOLUME contd.  

p
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ref d u d

ref d u u u

p g(H z) , H z H
p

p g(H H ) g(1 RC)(H z) ,0 z H

    
 

        

d u d

u
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pu
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NET PRESSURE FORCE  

p
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STREAMWISE MOMENTUM BALANCE ON CONTROL 

VOLUME  

p
p

qmomu qmomd

control volume

fpu

fpd

Hu

Ud

Hd

Uu

pref

z

/(momentum in control volume) = forces + net inflow rate of momentum 

2 2 2 2

u d u u d d

1 1
0 RCgH RCgH U H U H

2 2
      



21 

REDUCTION 

p
p

qmomu qmomd

control volume

fpu

fpd
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Ud
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2
2 f
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u d u u d d
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REDUCTION (contd.) 

p
p

qmomu qmomd

control volume

fpu

fpd

Hu

Ud

Hd

Uu

2 2
2 2 w w
u d

u d

q q1 1
0 RCgH RCgH

2 2 H H
   

Now define  = Hd/Hu (we expect that   1).  Also  

u f
du 3 / 2

u u

U q

RCgH RCgH
 Fr

Thus  
2 2

du

1
2 1 1 0

 
     
 

Fr
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REDUCTION (contd.) 

p
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qmomu qmomd

control volume
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RESULT 

p
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qmomu qmomd
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1 8 1

H 2
     
 

Fr

This is known as the conjugate depth relation. 
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Conjugate Depth Relation
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ADD MATERIAL ABOUT JUMP SIGNAL! 

AND CONTINUE WITH BORE! 
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SLUICE GATE TO FREE OVERFALL 

Define the momentum function Fmom such that  

H

q
gH

2

1
)H(F

2
2

mom 

Then the jump occurs where  

   
rightmomleftmom )H(F)H(F 

sluice gate, Fr > 1

free overfall, Fr = 1

Fr > 1

Fr < 1

The fact that Hleft = Hu  Hd = Hright at the jump defines a shock 
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SQUARE OF FROUDE NUMBER AS A RATIO OF FORCES 

Fr2 ~ (inertial force)/(gravitational force) 

 

inertial force/width ~ momentum discharge/width ~ U2H 

 

gravitational force/width ~ (1/2)gH2 

gH

U
~

gH
2

1

HU
~

2

2

2
2




Fr

Here “~” means “scales as”, not “equals”. 
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MIGRATING BORES AND THE SHALLOW WATER WAVE 

SPEED 

A hydraulic jump is a bore that has stabilized and no longer 

migrates. 

Tidal bore, Bay of Fundy, 

Moncton, Canada 
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MIGRATING BORES AND THE SHALLOW WATER WAVE 

SPEED 

Bore of the Qiantang River, 

China 

Pororoca Bore, Amazon River 

 

http://www.youtube.com/watch?v=

2VMI8EVdQBo   

http://www.youtube.com/watch?v=2VMI8EVdQBo
http://www.youtube.com/watch?v=2VMI8EVdQBo
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ANALYSIS FOR A BORE 

Ud Uu

c

The bore migrates with speed c 

The flow becomes steady relative to a coordinate system moving with speed 

c. 

Ud - c
Uu - c
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THE ANALYSIS ALSO WORKS IN THE OTHER DIRECTION 

Ud Uu

c

The case c = 0 corresponds to a hydraulic jump 
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CONTROL VOLUME 

q = (U-c)H qmass = (U-c)H  qmom = (U-c)2H 

p
p

qmomu qmomd

control volume

fpu
fpd

Hu
Hd

Ud - c
Uu - c

Mass balance 

Momentum 

balance 
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EQUATION FOR BORE SPEED 
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LINEARIZED EQUATION FOR BORE SPEED 

Let 
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Limit of small-amplitude bore: 
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LINEARIZED EQUATION FOR BORE SPEED (contd.) 

Limit of small-amplitude bore gHUc
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SPEED OF INFINITESIMAL SHALLOW WATER WAVE 

Froude number = flow velocity/shallow water wave speed 

gHc

cUc

sw

sw
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