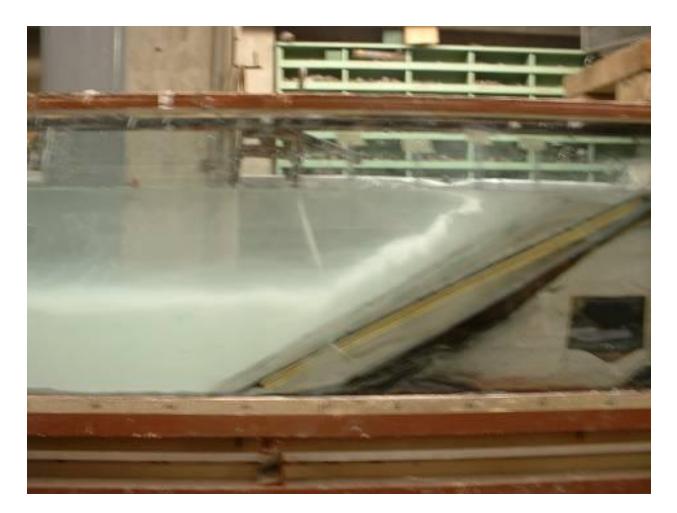
HYDRAULIC JUMPS



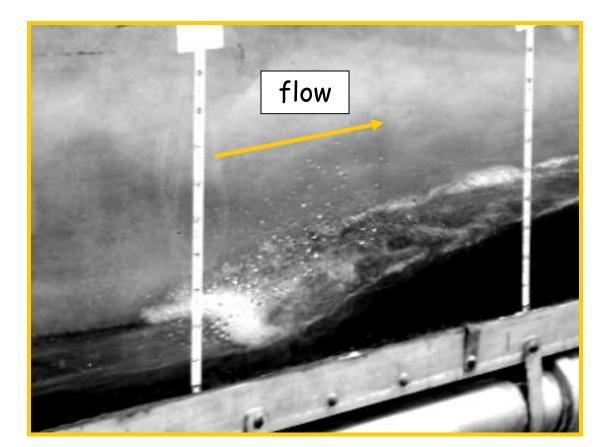
Hydraulic jump of a turbidity current in the laboratory. Flow is from right to left.

WHAT IS A HYDRAULIC JUMP?

A hydraulic jump is a type of *shock*, where the flow undergoes a sudden transition from swift, thin (shallow) flow to tranquil, thick (deep) flow.

Hydraulic jumps are most familiar in the context of open-channel flows.

The image shows a hydraulic jump in a laboratory flume.



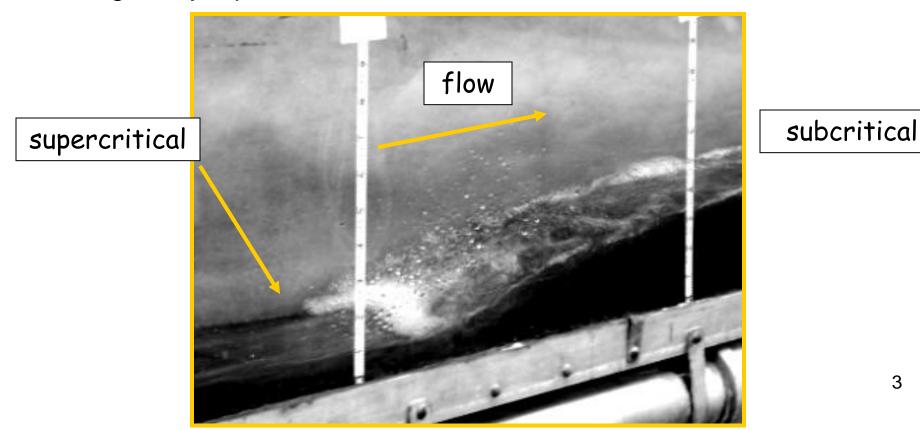
THE CHARACTERISTICS OF HYDRAULIC JUMPS

Hydraulic jumps in open-channel flow are characterized a drop in Froude number **Fr**, where

$$\mathbf{Fr} = \frac{\mathbf{U}}{\sqrt{\mathbf{gH}}}$$

from supercritical ($\mathbf{Fr} > 1$) to subcritical ($\mathbf{Fr} < 1$) conditions. The result is a step increase in depth H and a step decrease in flow velocity U passing through the jump.

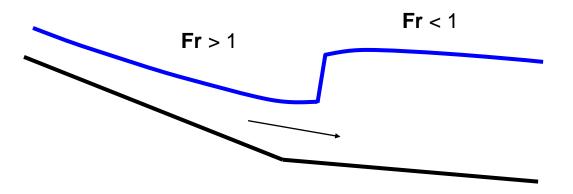
3

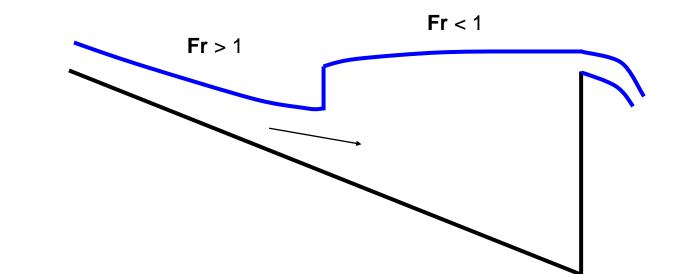


WHAT CAUSES HYDRAULIC JUMPS?

The conditions for a hydraulic jump can be met where

- a) the upstream flow is supercritical, and
- b) slope suddenly or gradually decreases downstream, or
- c) the supercritical flow enters a confined basin.





INTERNAL HYDRAULIC JUMPS

Hydraulic jumps in rivers are associated with an extreme example of flow stratification: flowing water under ambient air.

Internal hydraulic jumps form when a denser, fluid flows under a lighter ambient fluid. The photo shows a hydraulic jump as relatively dense air flows east across the Sierra Nevada Mountains, California.

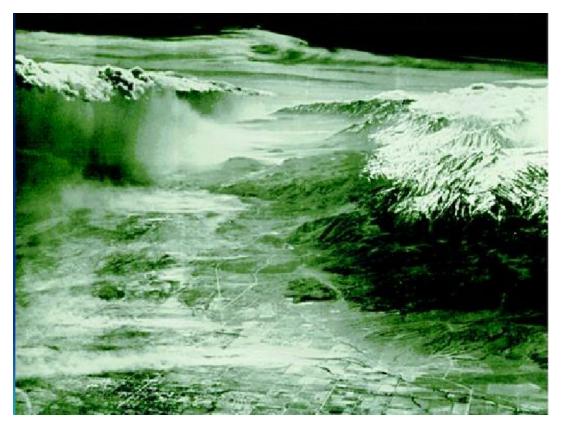
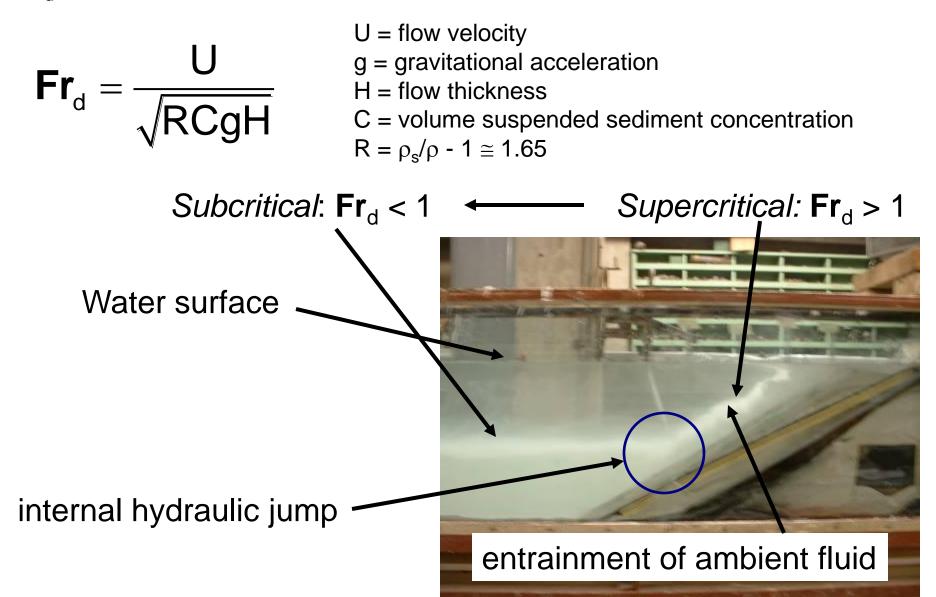


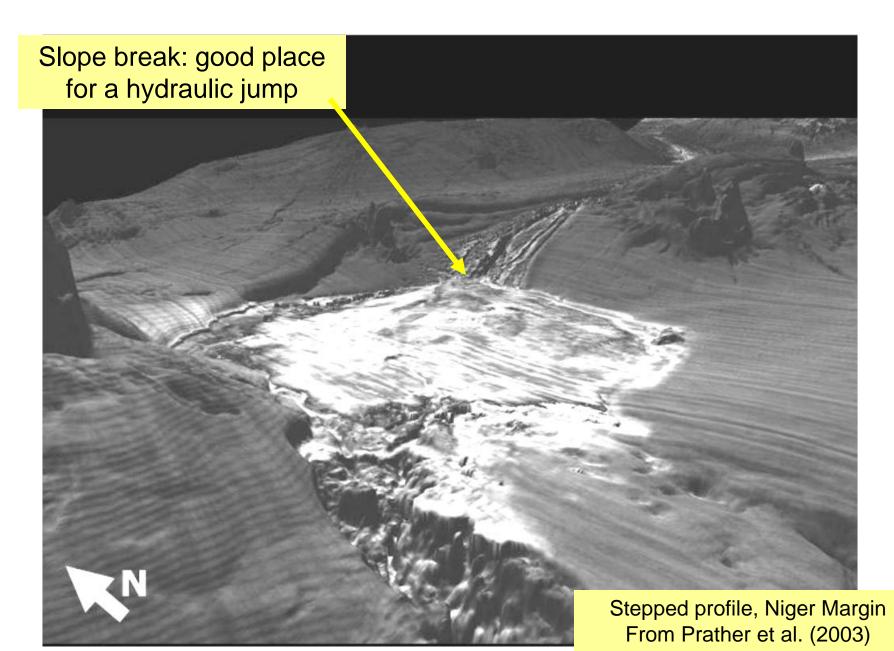
Photo by Robert Symons, USAF, from the Sierra Wave Project in the 1950s.

DENSIMETRIC FROUDE NUMBER

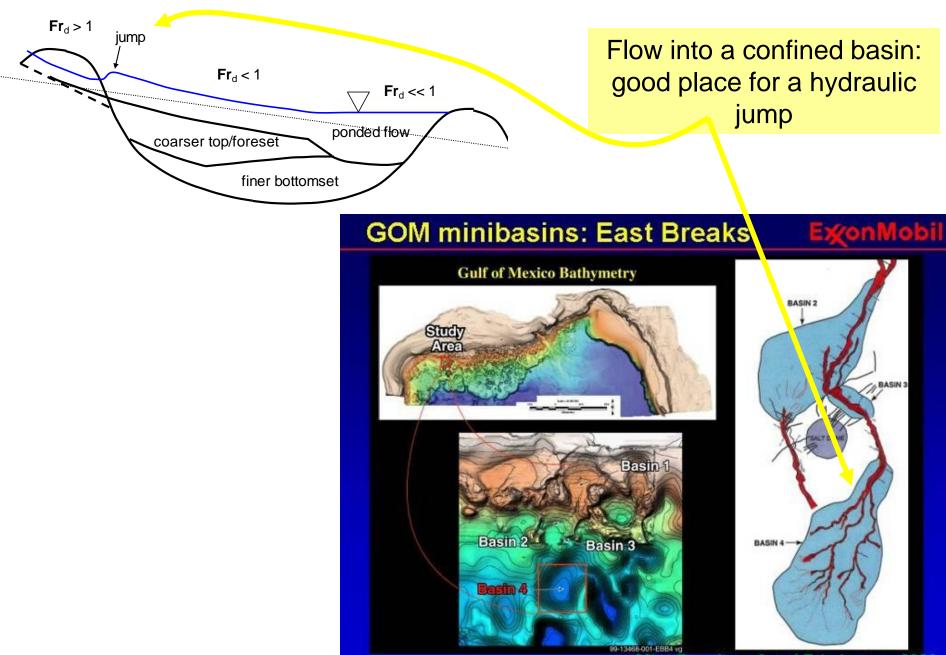
Internal hydraulic jumps are mediated by the *densimetric Froude number* \mathbf{Fr}_{d} , which is defined as follows for a turbidity current.



INTERNAL HYDRAULIC JUMPS AND TURBIDITY CURRENTS



INTERNAL HYDRAULIC JUMPS AND TURBIDITY CURRENTS



After Beaubouef and Friedmann, 2000

ANALYSIS OF THE INTERNAL HYDRAULIC JUMP

Definitions: "u" \rightarrow upstream and "d" \rightarrow downstream

U = flow velocity

- C = volume suspended sediment concentration
- z = upward vertical coordinate

p = pressure

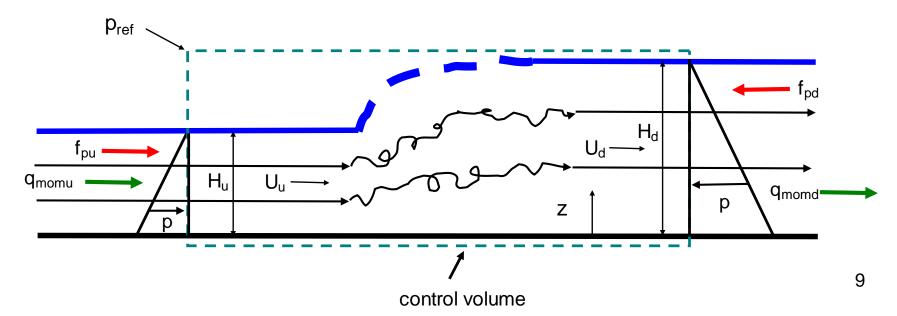
 p_{ref} = pressure force at z = H_d (just above turbidity current

 f_p = pressure force per unit width

 \dot{q}_{mom} = momentum discharge per unit width

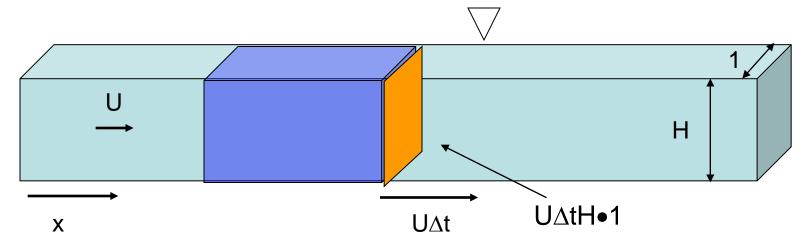
Flow in the control volume is steady.

USE TOPHAT ASSUMPTIONS FOR U AND C.



VOLUME, MASS, MOMENTUM DISCHARGE

H = depth U = flow velocity Channel has a unit width 1



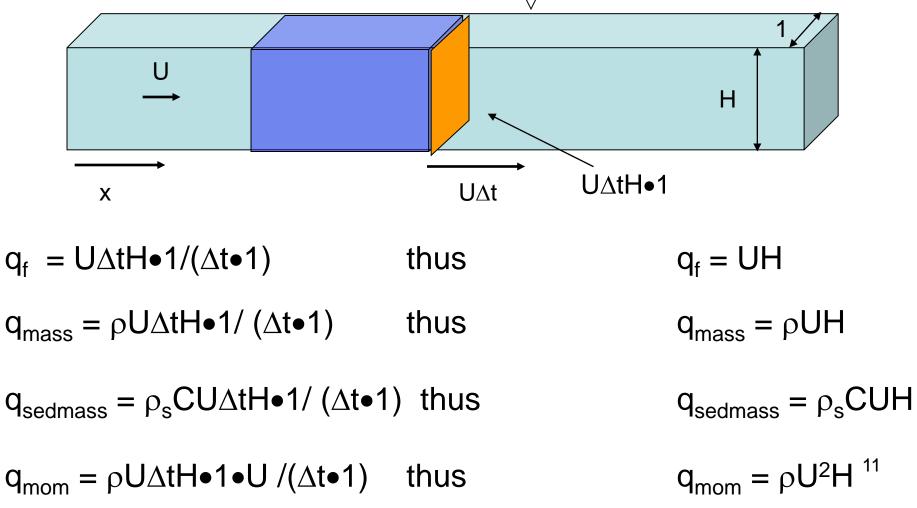
In time Δt a fluid particle flows a distance $U\Delta t$

The **volume** that crosses normal to the section in time $\Delta t = U\Delta tH \bullet 1$ The **flow mass** that crosses normal to the section in time Δt is density x volume crossed = $\rho(1+RC)U\Delta tH \bullet 1 \cong \rho U\Delta tH$ The **sediment mass** that crosses = $\rho_s CU\Delta tH \bullet 1$ The **momentum** that cross normal to the section is mass x velocity = $\rho(1+RC)U\Delta tH \bullet 1 \bullet U \cong \rho U^2\Delta tH$

10

VOLUME, MASS, MOMENTUM DISCHARGE (contd.)

 $q_f = volume discharge per unit width = volume crossed/width/time$ $<math>q_{mass} = flow mass discharge per unit width = mass crossed/width/time$ $<math>q_{sedmass} = sediment mass discharge per unit with = mass crossed/width/time$ $<math>q_{mom} = momentum discharge/width = momentum crossed/width/time$

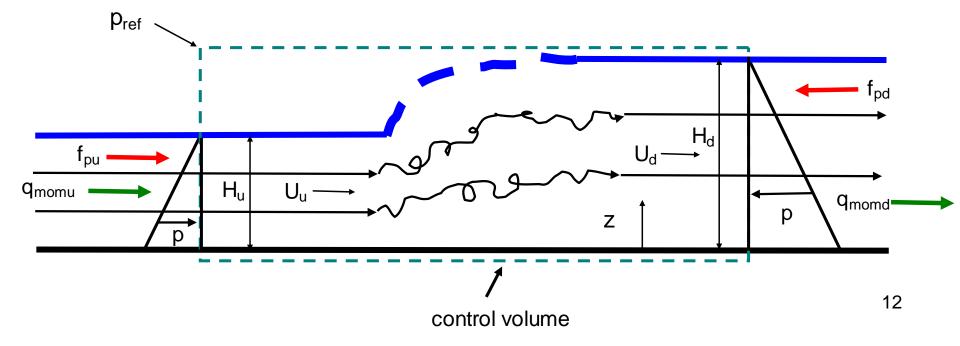


FLOW MASS BALANCE ON THE CONTROL VOLUME

 $\partial/\partial t$ (fluid mass in control volume) = net mass inflow rate

$$0 = q_{massu} - q_{massd} \quad \therefore \quad q_{mass} = const$$
 or

 $0 = \rho U_u H_u - \rho U_d H_d \quad \therefore \quad q_{mass} = constant = \rho q_f$ where $q_f = UH = flow discharge / width$

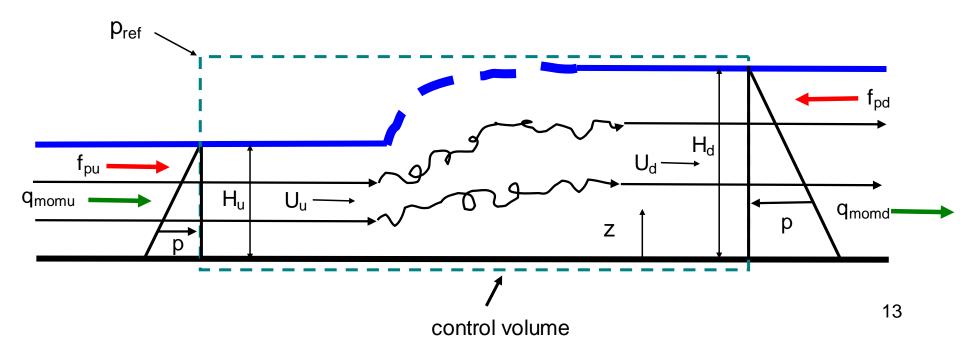


FLOW MASS BALANCE ON THE CONTROL VOLUME contd/

Thus flow discharge

$$q_f = UH$$

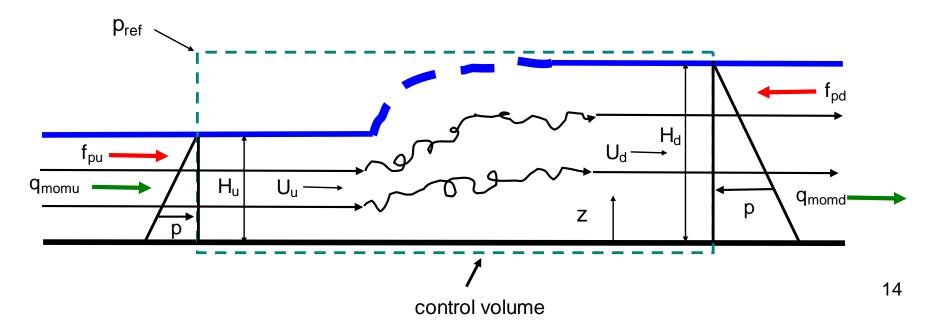
is constant across the hydraulic jump



BALANCE OF SUSPENDED SEDIMENT MASS ON THE CONTROL VOLUME

∂/∂t(sediment mass in control volume) = net sediment mass inflow rate

$$\begin{split} 0 &= q_{sedmassu} - q_{sedmassd} & \therefore & q_{sedmass} = const \\ or \\ 0 &= \rho_s C_u U_u H_u - \rho_s C_d U_d H_d & \therefore & q_{sedmass} = constant \end{split}$$



BALANCE OF SUSPENDED SEDIMENT MASS ON THE CONTROL VOLUME contd

Thus if the volume sediment discharge/width is defined as

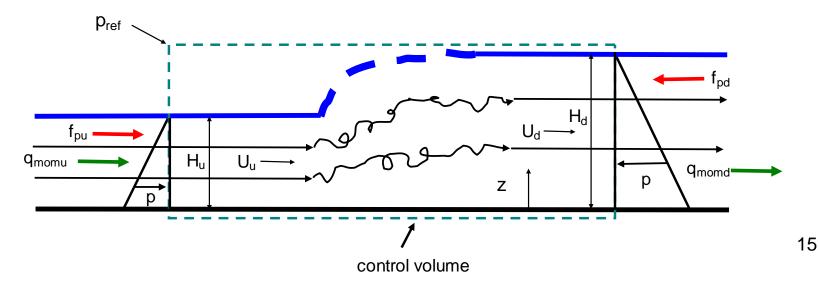
$$q_{sedvol} = CUH$$

then $q_{sedvol} = q_{sedmass} / \rho_s$ is constant across the jump.

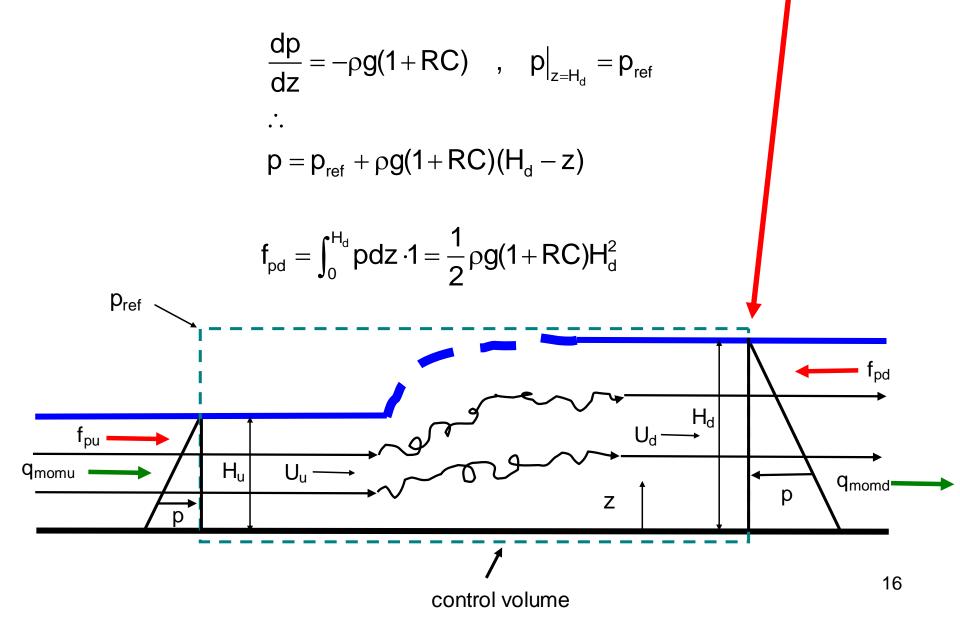
But if

$$q_f = UH = const$$
 , $q_{sedvol} = CUH = const$

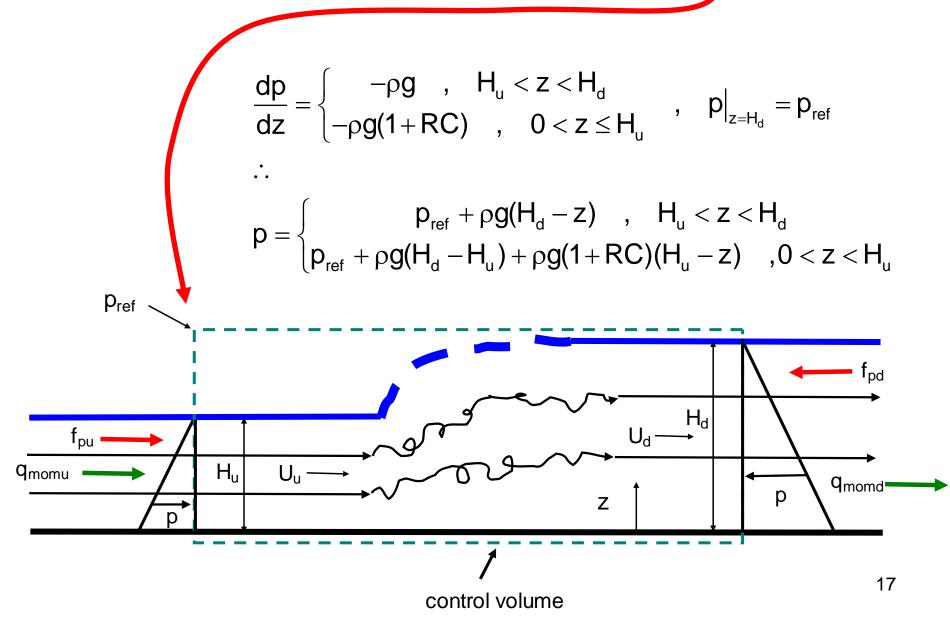
then C is constant across the jump!



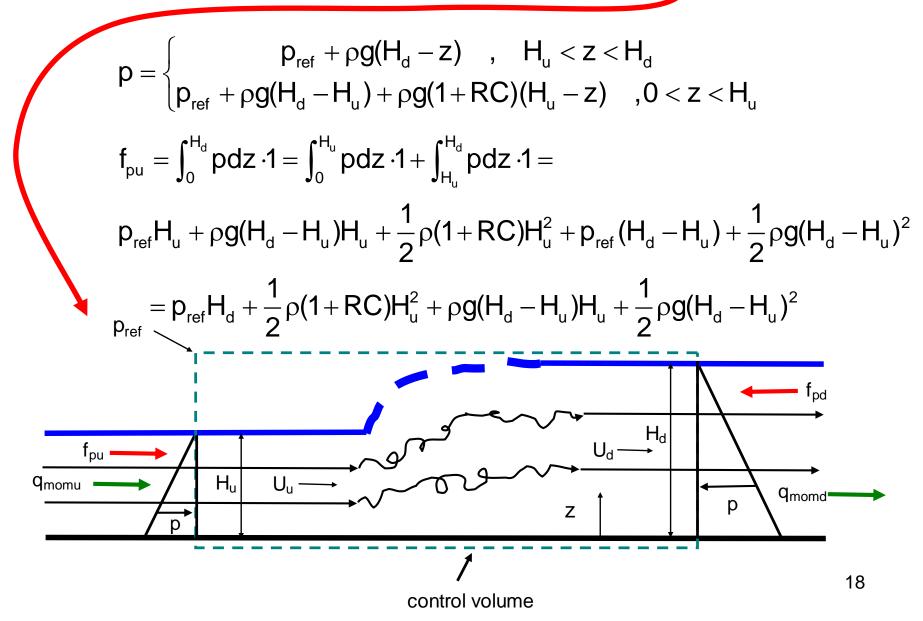
PRESSURE FORCE/WIDTH ON DOWNSTREAM SIDE OF CONTROL VOLUME



PRESSURE FORCE/WIDTH ON UPSTREAM SIDE OF CONTROL VOLUME

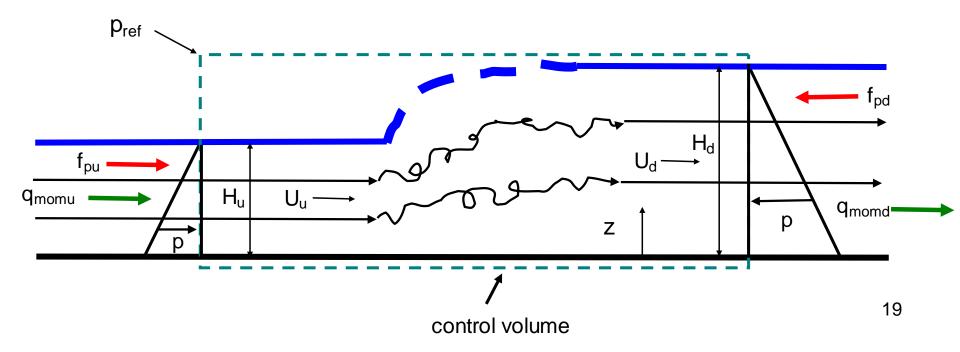


PRESSURE FORCE/WIDTH ON UPSTREAM SIDE OF CONTROL VOLUME contd.



NET PRESSURE FORCE

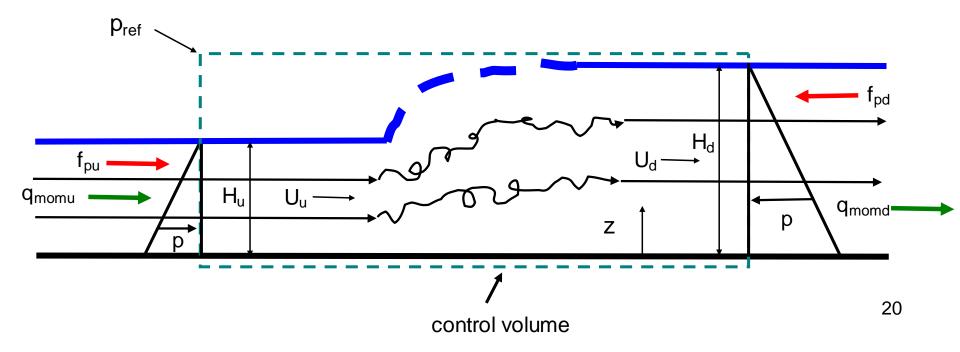
$$\begin{split} f_{pnet} &= f_{pu} - f_{pd} = p_{ref} H_d + \frac{1}{2} \rho (1 + RC) H_u^2 + \rho g (H_d - H_u) H_u + \frac{1}{2} \rho g (H_d - H_u)^2 \\ &- p_{ref} H_d - \frac{1}{2} \rho (1 + RC) g H_d^2 = \\ &\frac{1}{2} \rho RCg \Big(H_u^2 - H_d^2 \Big) \end{split}$$



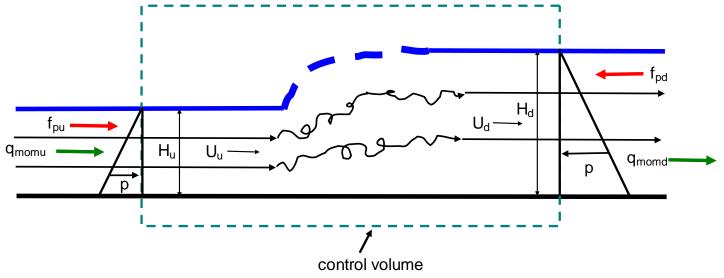
STREAMWISE MOMENTUM BALANCE ON CONTROL VOLUME

 ∂/∂ (momentum in control volume) = Σ forces + net inflow rate of momentum

$$0 = \frac{1}{2}\rho RCgH_{u}^{2} - \frac{1}{2}\rho RCgH_{d}^{2} + \rho U_{u}^{2}H_{u} - \rho U_{d}^{2}H_{d}$$

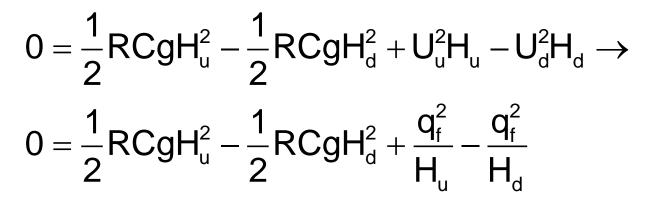


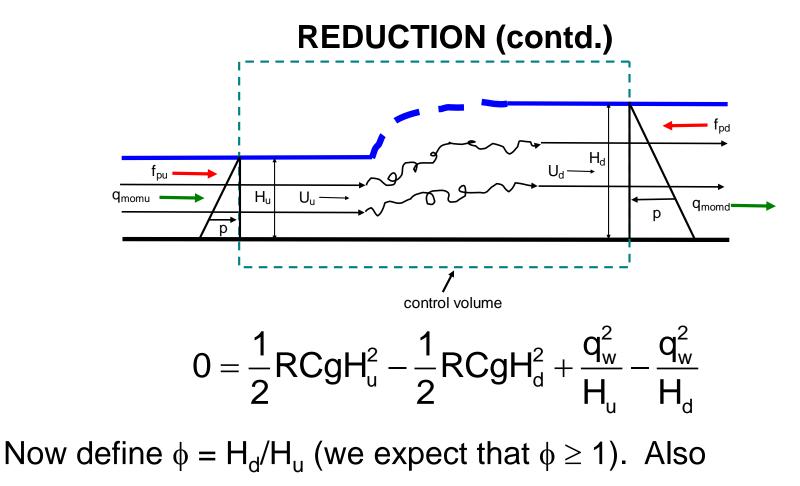
REDUCTION



$$\mathsf{UH} = \mathsf{q}_{\mathsf{f}} \quad \therefore \quad \mathsf{U}^2\mathsf{H} = \mathsf{Uq}_{\mathsf{f}} = \frac{\mathsf{q}_{\mathsf{f}}^2}{\mathsf{H}}$$

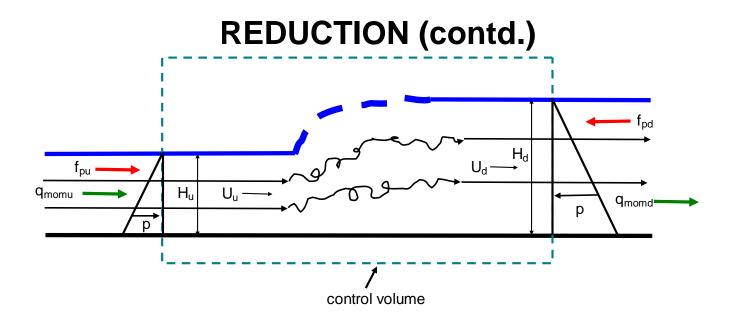
thus





$$\mathbf{Fr}_{du} = \frac{U_{u}}{\sqrt{RCgH_{u}}} = \frac{q_{f}}{\sqrt{RCg}H_{u}^{3/2}}$$
$$2\mathbf{Fr}_{du}^{2}\left(1 - \frac{1}{\phi}\right) + 1 - \phi^{2} = 0$$

Thus

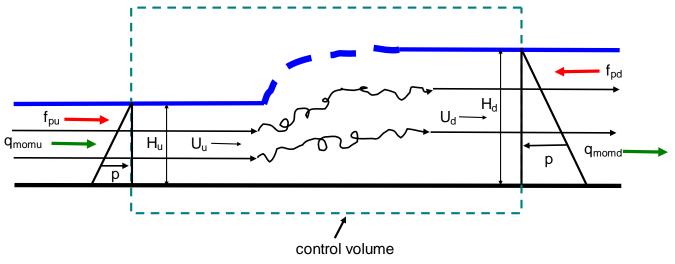


But $\left(1-\frac{1}{\phi}\right) = \left(\frac{\phi-1}{\phi}\right)$ $1-\phi^2 = -(\phi+1)(\phi-1)$

$$2\mathbf{Fr}_{du}^{2} \frac{(\phi-1)}{\phi} - (\phi+1)(\phi-1) = 0$$

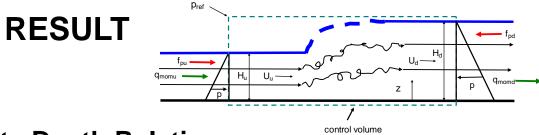
$$\phi^2 + \phi - 2\mathbf{Fr}_{du}^2 = 0$$

RESULT

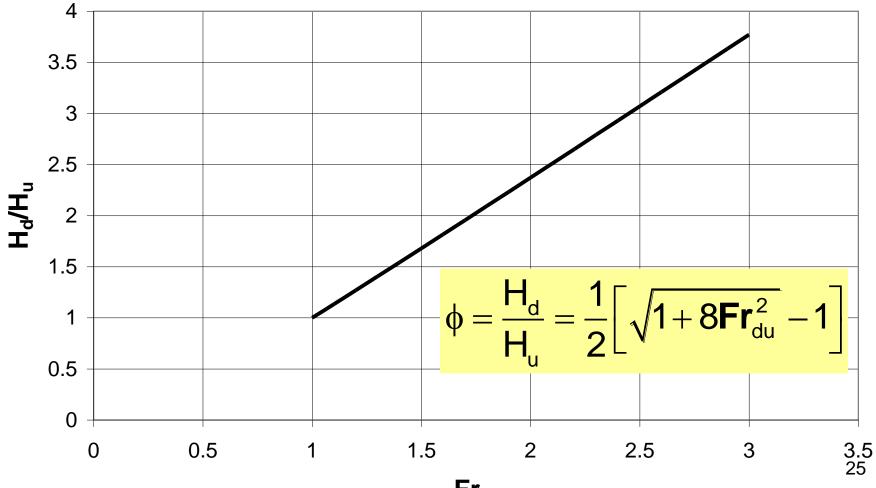


$$\phi = \frac{H_d}{H_u} = \frac{1}{2} \left[\sqrt{1 + 8Fr_{du}^2} - 1 \right]$$

This is known as the conjugate depth relation.

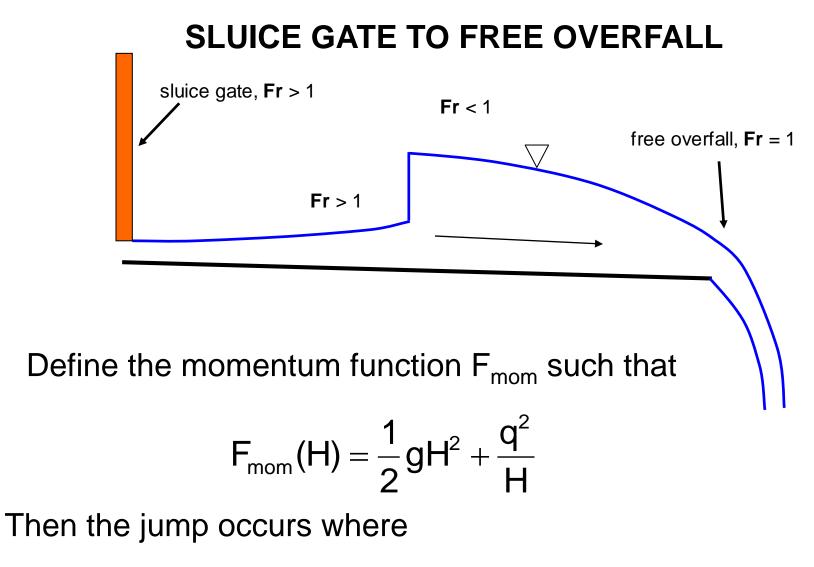


Conjugate Depth Relation



 $\mathbf{Fr}_{\mathrm{du}}$

ADD MATERIAL ABOUT JUMP SIGNAL! AND CONTINUE WITH BORE!



$$\left[\mathsf{F}_{\mathsf{mom}}(\mathsf{H})\right]_{\mathsf{left}} = \left[\mathsf{F}_{\mathsf{mom}}(\mathsf{H})\right]_{\mathsf{right}}$$

The fact that $H_{left} = H_u \neq H_d = H_{right}$ at the jump defines a shoet k

SQUARE OF FROUDE NUMBER AS A RATIO OF FORCES

Fr² ~ (inertial force)/(gravitational force)

inertial force/width ~ momentum discharge/width ~ $\rho U^2 H$

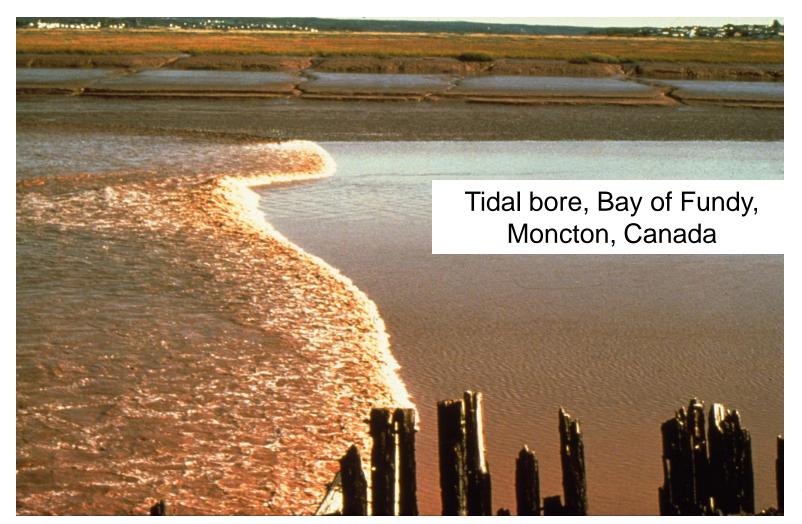
gravitational force/width ~ $(1/2)gH^2$

$$\mathbf{Fr}^{2} \sim \frac{\rho U^{2} H}{\frac{1}{2} \rho g H^{2}} \sim \frac{U^{2}}{g H}$$

Here "~" means "scales as", not "equals".

MIGRATING BORES AND THE SHALLOW WATER WAVE SPEED

A **hydraulic jump** is a **bore** that has stabilized and no longer migrates.



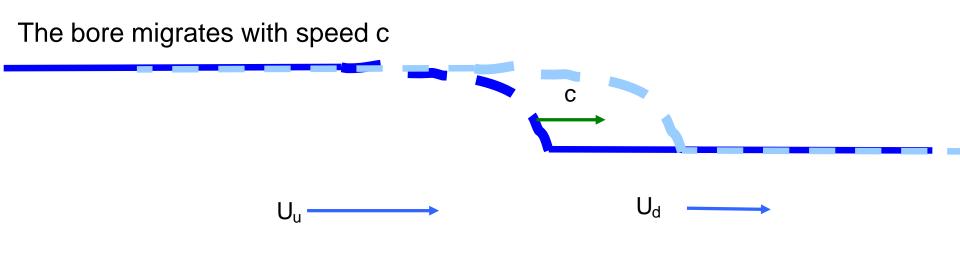
MIGRATING BORES AND THE SHALLOW WATER WAVE SPEED

Bore of the Qiantang River, China

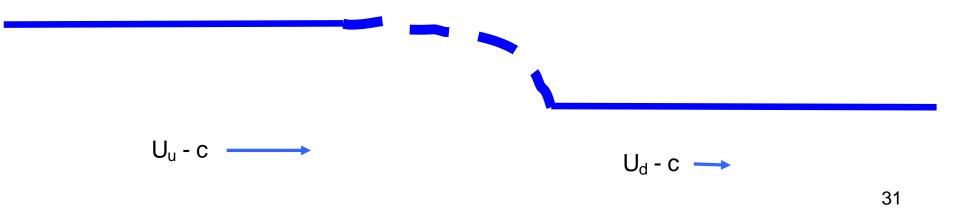
Pororoca Bore, Amazon River

http://www.youtube.com/watch?v= 2VMI8EVdQBo

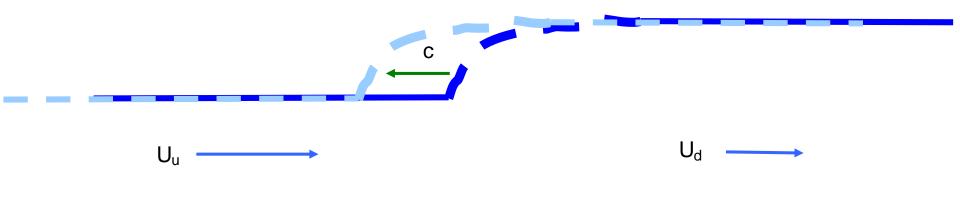
ANALYSIS FOR A BORE



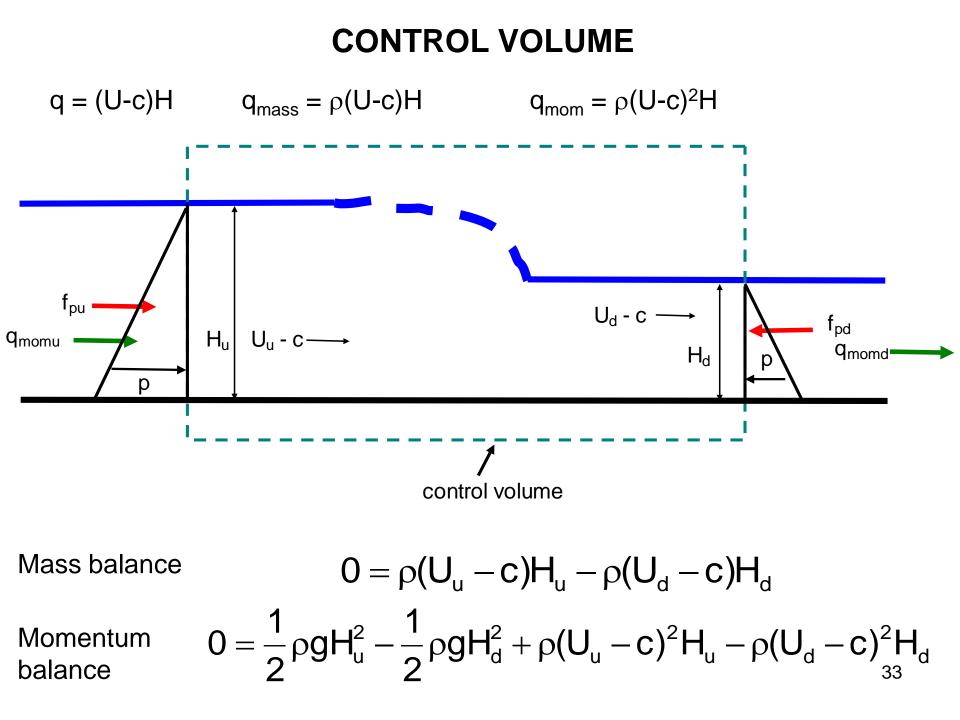
The flow becomes **steady** relative to a coordinate system moving with speed c.



THE ANALYSIS ALSO WORKS IN THE OTHER DIRECTION



The case c = 0 corresponds to a hydraulic jump



EQUATION FOR BORE SPEED

-

$$(U_d - c) = (U_u - c) \frac{H_u}{H_d}$$

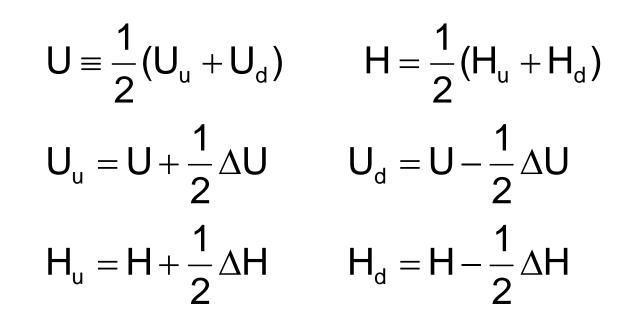
$$0 = \frac{1}{2}\rho g H_{u}^{2} - \frac{1}{2}\rho g H_{d}^{2} + \rho (U_{u} - c)^{2} H_{u} - \rho (U_{u} - c)^{2} \frac{H_{u}^{2}}{H_{d}}$$

$$(U_u - c)^2 H_u \left(\frac{H_u}{H_d} - 1\right) = \frac{1}{2}g(H_u^2 - H_d^2)$$

$$c = U_{u} \pm \sqrt{\frac{\frac{1}{2}g(H_{u}^{2} - H_{d}^{2})}{H_{u}\left(\frac{H_{u}}{H_{d}} - 1\right)}}$$

LINEARIZED EQUATION FOR BORE SPEED

Let



Limit of small-amplitude bore:

$$\frac{\Delta H}{H} << 1 \qquad \frac{\Delta U}{U} << 1$$

LINEARIZED EQUATION FOR BORE SPEED (contd.)

$$c = U\left(1 + \frac{1}{2}\frac{\Delta U}{U}\right) \pm \sqrt{\frac{\frac{1}{2}g\left\{H^{2}\left[\left(1 + \frac{1}{2}\frac{\Delta H}{H}\right)^{2} - \left(1 - \frac{1}{2}\frac{\Delta H}{H}\right)^{2}\right]\right\}}{H\left(1 + \frac{1}{2}\frac{\Delta H}{H}\right)\left[\frac{\left(1 + \frac{1}{2}\frac{\Delta H}{H}\right)}{\left(1 - \frac{1}{2}\frac{\Delta H}{H}\right)} - 1\right]} \cong$$
$$c = U\left(1 + \frac{1}{2}\frac{\Delta U}{U}\right) \pm \sqrt{\frac{\frac{1}{2}gH^{2}\left(2\frac{\Delta H}{H}\right)}{H\left(1 + \frac{1}{2}\frac{\Delta H}{H}\right)\left[\frac{\Delta H}{H} + o\left(\frac{\Delta H}{H}\right)^{2}\right]}}{H\left(1 + \frac{1}{2}\frac{\Delta H}{H}\right)\left[\frac{\Delta H}{H} + o\left(\frac{\Delta H}{H}\right)^{2}\right]}$$
$$\therefore \quad c \cong U \pm \sqrt{gH} \qquad \text{Limit of small-amplitude bore}$$

SPEED OF INFINITESIMAL SHALLOW WATER WAVE

$$c \cong U \pm c_{sw}$$

 $c_{sw} = \sqrt{gH}$

Froude number = flow velocity/shallow water wave speed

$$\mathbf{Fr} = \frac{U}{\sqrt{gH}}$$